JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulation of mitochondrial biogenesis in brown adipose tissue: nuclear respiratory factor-2/GA-binding protein is responsible for the transcriptional regulation of the gene for the mitochondrial ATP synthase beta subunit.

Biochemical Journal 1998 April 2
The regulation of transcription of the gene for the beta subunit of the FoF1 ATP synthase (ATPsynbeta) in brown adipose tissue has been studied as a model to determine the molecular mechanisms for mitochondrial biogenesis associated with brown adipocyte differentiation. The expression of the ATPsynbeta mRNA is induced during the brown adipocyte differentiation that occurs during murine prenatal development or when brown adipocytes differentiate in culture. This induction occurs in parallel with enhanced gene expression for other nuclear and mitochondrially-encoded components of the respiratory chain/oxidative phosphorylation system (OXPHOS). Transient transfection assays indicated that the expression of the ATPsynbeta gene promoter is higher in differentiated HIB-1B brown adipocytes than in non-differentiated HIB-1B cells. A major transcriptional regulatory site was identified between nt -306 and -266 in the ATPsynbeta promoter. This element has a higher enhancer capacity in differentiated brown adipocyte HIB-1B cells than in non-differentiated cells. Electrophoretic shift analysis indicated that Sp1and nuclear respiratory factor-2/GA-binding protein (NRF2/GABP) were the main nuclear proteins present in brown adipose tissue that bind this site. Double-point mutant analysis indicated a major role for the NRF2/GABP site in the enhancer capacity of this element in brown fat cells. It is proposed that NRF2/GABP plays a pivotal role in the co-ordinated enhancement of OXPHOS gene expression associated with mitochondrial biogenesis in brown adipocyte differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app