JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Interstitial laser hyperthermia model development for minimally invasive therapy of breast carcinoma.

BACKGROUND: This investigation describes the preclinical development of a laser fiberoptic interstitial delivery system for the thermal destruction of small breast cancers. We propose adaptation of this technology to stereotactic mammographic instrumentation currently employed for diagnostic core biopsy to thermally ablate a site of disease with maximal treatment efficacy, minimal observable superficial change, reduced patient trauma, and lowered overall treatment costs.

STUDY DESIGN: Laser hyperthermia is a clinical modality that seeks to achieve tumor destruction through controlled tissue heating. The advantage of laser-induced hyperthermia over traditionally used heat sources such as ultrasound, microwave, or radiowave radiation lies in the ability to focus heat localization to the specific tumor tissue site. Neodymium:yttrium aluminum garnet (Nd:YAG) laser light transmitted through a fiberoptic cable to a diffusing quartz tip can induce such temperature increases leading to localized tissue destruction. Because breast cancer occurs with greatest frequency in the mature woman whose breast tissue has undergone glandular involution with fatty replacement, this study concentrates on determining the resultant laser energy heat distribution within fat and fibrofatty tissue. This investigation studied the time-temperature responses of ex vivo human breast and porcine fibrofatty tissue, which led to an in vivo subcutaneous porcine model for the practical demonstration of a laser hyperthermia treatment of small volumes of porcine mammary chain tissue.

RESULTS: Spatial recordings of the resultant temperature fields through time exhibited similar, reproducible thermal profiles in both ex vivo human breast and subcutaneous porcine fat. In vivo laser-produced temperature fields in porcine subcutaneous fat were comparable to those in the ex vivo analyses, and showed a histologically, sharply defined, and controllable volume of necrosis with no injury to adjacent tissues or to overlying skin.

CONCLUSIONS: Interstitially placed, fiberoptically delivered Nd:YAG laser energy is capable of controlled tissue denaturation to a defined volume for the treatment of small breast cancers. It is hoped that this minimally invasive approach, with further investigation and refinement, may lead to the effective treatment of small, well-defined breast cancers that are commonly diagnosed through stereographic mammography and stereotactic core biopsy. The juxtaposition of such a localized treatment modality with these increasingly used diagnostic tools is of considerable promise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app