Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Cholinergic and non-cholinergic afferents of the caudolateral parabrachial nucleus: a role in the long-term enhancement of rapid eye movement sleep.

Neuroscience 1998 April
A single microinjection of the cholinergic agonist carbachol into the feline caudolateral parabrachial nucleus produces an immediate increase in state-independent ipsilateral ponto-geniculooccipital waves, followed by a long-term rapid eye movement sleep enhancement lasting 7-10 days. Using retrogradely-transported fluorescent carbachol-conjugated nanospheres and choline acetyltransferase immunohistochemistry, afferent projections to this injection site for long-term rapid eye movement sleep enhancement were mapped and quantified. Six regions in the brain stem contained retrogradely-labelled cells: the raphe nuclei, locus coeruleus, laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus, parabrachial nucleus, and the pontine reticular formation. The retrogradely-labelled (rhodamine+) cells in the pontine reticular formation and pedunculopontine tegmental nucleus contributed the predominant input to the parabrachial nucleus injection site (34.3 +/- 5.3% and 28.4 +/- 5.6%, respectively), compared to the laterodorsal tegmental nucleus (5.8 +/- 3.8%), parabrachial nucleus (13.5 +/- 3.1%), raphe nuclei (12.9 +/- 2.7%), and locus coeruleus (5.1 +/- 2.4%). By comparison with findings of afferent input to the induction site for short-latency rapid eye movement sleep in the anterodorsal pontine reticular formation, the parabrachial nucleus injection site is characterized by a similar proportion of afferents, except that the raphe nuclei were found to provide more than a two-fold greater input. Retrogradely-labelled neurons quantified in these nuclear regions consisted of 21.5% double-labelled (rhodamine+/choline acetyltransferase+) cholinergic and 78.5% noncholinergic (rhodamine+/choline acetyltransferase-) cells. The pedunculopontine tegmental nucleus contributed the predominant (51.7 +/- 8.2%) cholinergic input, compared to laterodorsal tegmental nucleus (20.7 +/- 10.2%), parabrachial nucleus (23.1 +/- 7.5%), and pontine reticular formation (4.4 +/- 2.1%). A comparative analysis of the total retrogradely-labelled cells within each nuclear region which were also double-labelled showed the highest proportion in the laterodorsal tegmental nucleus (76.2 +/- 7.5%) compared to pedunculopontine tegmental nucleus (39.4 +/- 3.6%), parabrachial nucleus (37.3 +/- 2.8%), and pontine reticular formation (3.2 +/- 2.1%). These data indicate that while pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus neurons exert a powerful cholinergic influence on the injection site for long-term rapid eye movement enhancement, a major component of the afferent circuitry is non-cholinergic. Since the non-cholinergic input includes contributions from the locus coeruleus and raphe nuclei, it is probable that the caudolateral parabrachial nucleus contains cholinergic and aminergic afferent systems that participate in the long-term enhancement of rapid eye movement sleep.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app