Add like
Add dislike
Add to saved papers

Characterization of the aminomethylchroman derivative BAY x 3702 as a highly potent 5-hydroxytryptamine1A receptor agonist.

The aminomethylchroman derivative BAY x 3702 (R-(-)-2-[4-[(chroman-2-ylmethyl)-amino]-butyl]-1,1-dioxo-benzo[d] isothiazolone hydrochloride) is a new high affinity 5-hydroxytryptamine (5-HT)1A receptor ligand [calf hippocampus: Ki: 0.19 nM; reference compounds 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) and ipsapirone: 0.98 and 2.56, respectively; rat cortex: 0.24 nM; rat hippocampus: 0.58 nM; human cortex and recombinant 5-HT1A receptors: 0.25 and 0.4 nM, respectively]. BAY x 3702 bound also with relatively high to moderate affinity to the following receptors: alpha-1 and alpha-2 adrenergic (Ki: 6 and 7 nM, respectively); 5-HT7- and 5-HT1D (7 and 36 nM); dopamine D2- and D4 (48 and 91 nM); sigma sites (176 nM) and 5-HT2C (310 nM); others: > 10 microM, as obtained in more than 50 different binding assays. In the forskolin-stimulated adenylate cyclase assay in rat hippocampal tissue, a model of postsynaptic 5-HT1A receptor function, BAY x 3702 was a potent 5-HT1A receptor full agonist (IC50: 1.9 nM; 8-OH-DPAT: 25.3 nM, full agonist; ipsapirone: partial agonist) and its effects could be completely blocked by the 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xan e carboxamide trihydrochloride (WAY-100635). At those receptors where BAY x 3702 bound with lower affinity, the compound appeared to be either an agonist (5-HT1D receptors) or an antagonist (alpha-1, alpha-2 and D2 receptors). In a rat brain slice preparation containing the dorsal raphe nucleus (DRN), a model of somatodendritic 5-HT1A receptor function, BAY x 3702 inhibited potently (1 nM) neuronal firing. Also in vivo, BAY x 3702 (0.5 microgram/kg, i.v.) was found to suppress 5-HT neuronal firing in the DRN of anesthetized rats. In both electrophysiological assays BAY x 3702 was more potent than 8-OH-DPAT and ipsapirone; the potency difference being about 1 and 2 orders of magnitude, respectively. In rats trained to discriminate 8-OH-DPAT (0.1 mg/kg, i.p.) in a drug discrimination procedure, complete generalization was obtained with BAY x 3702 (ED50: 0.022 mg/kg, i.p. and 0.38 mg/kg, p.o.; 8-OH-DPAT: 0.028 mg/kg, i.p. and ipsapirone: 0.44 mg/kg, i.p.). In the rat hypothermia model BAY x 3702 induced a WAY-100635-reversible effect and the compound had a higher potency and intrinsic activity than 8-OH-DPAT and ipsapirone (ED50: 0.25 mg/kg, i.p. and 5.4 mg/kg, p.o., respectively; 8-OH-DPAT: 1.1 mg/kg, i.p. and ipsapirone: 6.2 mg/kg, i.p.). BAY x 3702 induced a stimulation of plasma ACTH levels in the rat; the effect being again more pronounced than that of ipsapirone (ED50: 7.5 and 25.3 mg/kg, p.o., respectively). It is concluded that BAY x 3702 is a relatively selective 5-HT1A receptor agonist with high potency and intrinsic activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app