Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Design, synthesis, and application of a protein A mimetic.

Nature Biotechnology 1998 Februrary
Low-molecular-weight synthetic molecules that mimic the activity of native biological macromolecules have therapeutic potential, utility in large-scale production of biopharmaceuticals, and the capacity to act as probes to study molecular recognition events. We have developed a nonpeptidyl mimic for Staphylococcus aureus Protein A (SpA). The specific recognition and complexation elements between the B domain (Fb) of SpA and the Fc fragment of IgG were identified from the x-ray crystallographic structure. Computer-aided molecular modeling was used to design a series of biomimetic molecules around the Phe132-Tyr133 dipeptide involved in its binding to IgG. One of the ligands binds IgG competitively with SpA in solution and when immobilized on agarose beads, with an affinity constant of 10(5)-10(6) M-1. The immobilized artificial Protein A was used to purify IgG from human plasma and murine IgG from ascites fluid, and to remove bovine IgG from fetal calf serum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app