Clinical Trial
Journal Article
Add like
Add dislike
Add to saved papers

Hypohydration and thermoregulation in cold air.

This study examined the effects of hypohydration on thermoregulation during cold exposure. In addition, the independent influences of hypohydration-associated hypertonicity and hypovolemia were investigated. Nine male volunteers were monitored for 30 min at 25 degrees C, then for 120 min at 7 degrees C, under three counterbalanced conditions: euhydration (Eu), hypertonic hypohydration (HH), and isotonic hypohydration (IH). Hypohydration was achieved 12 h before cold exposure by inducing sweating (HH) or by ingestion of furosemide (IH). Body weight decrease (4.1 +/- 0.2%) caused by hypohydration was similar for HH and IH, but differences (P < 0.05) were found between HH and IH in plasma osmolality (292 +/- 1 vs. 284 +/- 1 mosmol/kgH2O) and plasma volume reduction (-8 +/- 2 vs. -18 +/- 3%). Heat debt (349 +/- 14 among) did not differ (P > 0.05) among trials. Mean skin temperature decreased throughout cold exposure during Eu but plateaued after 90 min during HH and IH. Forearm-finger temperature gradient tended (P = 0.06) to be greater during Eu (10.0 +/- 0.7 degrees C) than during HH or IH (8.9 +/- 0.7 degrees C). This suggests weaker vasoconstrictor tone during hypohydration than during Eu. Final mean skin temperature was higher for HH than for Eu or IH (23.5 +/- 0.3, 22.6 +/- 0.4, and 22.9 +/- 0.3 degrees C, respectively), and insulation was lower on HH than on IH (0.13 +/- 0.01 vs. 0.15 +/- 0.01 degree C.W-1.m-2, respectively), but not with Eu (0.14 +/- 0.01 degree C.W-1.m-2). This provides some evidence that hypertonicity impairs the vasoconstrictor response to cold. Although mild hypohydration did not affect body heat balance during 2-h whole body exposure to moderate cold, hypohydration-associated hypertonicity may have subtle effects on vasoconstriction that could become important during a more severe cold exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app