JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The convective afterdrop component during hypothermic exercise decreases with delayed exercise onset.

HYPOTHESIS: Following cold water immersion, the post-cooling decrease in esophageal temperature (Tes) (i.e., afterdrop) is 3 times greater during exercise than during shivering, presumably due to increased muscular blood flow and convective core-to-periphery heat loss with exercise (J. Appl. Physiol. 63:2375, 1987). We felt that if exercise were to commence once the afterdrop period during shivering is complete, the threat of a further decrease in Tes (i.e., a second afterdrop) during the subsequent exercise would be minimized because much of the convective capacity for core cooling would already be dissipated.

METHODS: Six subjects were each cooled three times in 8 degrees C water, until Tes decreased to 35.3 +/- 0.7 degrees C, and rewarmed by either shivering alone, exercise, or exercise commencing once a shivering afterdrop period was complete.

RESULTS: The initial afterdrop was greater during Exercise only (1.1 +/- 0.4 degrees C) than Shivering only (0.35 +/- 0.3 degrees C) and Shivering-Exercise (0.45 +/- 0.2 degrees C) (p < 0.05). In contrast, exercise caused a secondary afterdrop of only 0.38 +/- 0.3 degrees C during Shivering-Exercise (p < 0.05). The initial rewarming rate during Exercise only (3.45 degrees C.h-1) was greater than the initial (2.7 degrees C.h-1) and second (2.4 degrees C.h-1) rewarming rates during Shivering-Exercise (p < 0.05), but not significantly greater than during Shivering only (2.99 degrees C.h-1) (p < 0.1).

DISCUSSION: It is likely that during the Shivering-Exercise protocol, continued blood flow to shivering muscles: a) contributes to the initial afterdrop, and thus b) diminishes the convective capacity (or heat sink) available for further cooling during subsequent exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app