CLINICAL TRIAL
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effect of norepinephrine on insulin secretion and glucose effectiveness in non-insulin-dependent diabetes.

It has previously been shown that in normal subjects, physiological elevation of norepinephrine (NE) impairs insulin sensitivity (Si) but does not influence insulin secretion. The aim of this study was to determine the effect of short-term physiological elevation of NE on insulin secretion, Si, and glucose-mediated glucose disposal, or the glucose effectiveness index (Sg), in non-insulin-dependent diabetes mellitus (NIDDM). Two intravenous glucose tolerance tests (IVGTTs) were performed in eight well-controlled NIDDM patients, using a supplemental exogenous insulin infusion to achieve an approximation of normal endogenous insulin secretion. The IVGTTs were performed in random order after 30 minutes of either the saline (SAL) or NE (25 ng/kg/min) infusions, which were continued throughout the 3-hour IVGTT. Sg and Si were estimated by minimal model analysis of the IVGTT data as previously described. Plasma C-peptide was used to estimate insulin secretion rate using the ISEC program. NE infusion produced approximately a threefold increase in plasma NE, associated with (1) a significant reduction in glucose disposal ([KG] SAL v NE, 0.73 +/- 0.06 v 0.61 +/- 0.06 x 10(-2).min-1, P < .05), (2) no reduction in Si (2.33 +/- 0.8 v 2.62 +/- 0.9 x 10(-4).min-1/mU/L, NS), (3) a reduced mean second-phase insulin secretion rate (1.21 +/- 0.19 v 1.01 +/- 0.16 x 10(-3) pmol/kg/min per mmol/L glucose, P < .05), (4) a significant increase in Sg (0.89 +/- 0.08 v 1.63 +/- 0.2 x 10(-2).min-1, P < .05), and (5) a corresponding increase in glucose effectiveness at zero insulin ([GEZI] 0.55 +/- 0.13 v 1.30 +/- 0.33 x 10(-2).min-1, P < .05). These results show that in contrast to normal subjects, physiological elevation of NE in NIDDM does not result in a reduction in Si, but causes a reduction in glucose disposal related to inhibition of insulin secretion that is only partially compensated for by increased Sg.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app