JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Avian VEGF-C: cloning, embryonic expression pattern and stimulation of the differentiation of VEGFR2-expressing endothelial cell precursors.

Development 1998 Februrary
VEGF-C is a recently discovered secreted polypeptide related to the angiogenic mitogen VEGF. We have isolated the quail VEGF-C cDNA and shown that its protein product is secreted from transfected cells and interacts with the avian VEGFR3 and VEGFR2. In situ hybridization shows that quail VEGF-C mRNA is strongly expressed in regions destined to be rich in lymphatic vessels, particularly the mesenteries, mesocardium and myotome, in the region surrounding the jugular veins, and in the kidney. These expression sites are similar to those observed in the mouse embryo (E. Kukk, A. Lymboussaki, S. Taira, A. Kaipainen, M. Jeltsch, V. Joukov and K. Alitalo, 1996, Development 122, 3829-3837). We have observed VEGFR3-positive endothelial cells in proximity to most of the VEGF-C-expressing sites, suggesting functional relationships between this receptor-ligand couple. The comparison of the VEGF and VEGFR2 knockout phenotypes had suggested the existence of another ligand for VEGFR2. We therefore investigated the effect of VEGF-C on VEGFR2-positive cells isolated from the posterior mesoderm of gastrulating embryos. We have recently shown that VEGF binding triggers endothelial differentiation of these cells, whereas hemopoietic differentiation appears to be mediated by binding of a so far unidentified VEGFR2 ligand. We show here that VEGF-C also triggers endothelial differentiation of these cells, presumably via VEGFR2. These results indicate that VEGF and VEGF-C can act in a redundant manner via VEGFR2. In conclusion, VEGF-C appears to act during two different developmental phases, one early in posterior mesodermal VEGFR2-positive endothelial cell precursors which are negative for VEGFR3 and one later in regions rich in lymphatic vessels at a time when endothelial cells express both VEGFR2 and VEGFR3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app