JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The SRY cantilever motif discriminates between sequence- and structure-specific DNA recognition: alanine mutagenesis of an HMG box.

The high-mobility-group (HMG) box defines a DNA-bending motif conserved among architectural transcription factors. A "hydrophobic wedge" at the protein surface provides a mechanism of DNA bending: disruption of base stacking by insertion of a sidechain "cantilever." First described in the mammalian testis-determining factor SRY, the cantilever motif consists of adjacent aromatic and nonpolar sidechains at the crux of the HMG box (residues 12 and 13). Here, the role of these side chains in DNA recognition is investigated by alanine mutagenesis. F12A and I13A substitutions in the SRY HMG box each permit native folding and thermal stability (as monitored by circular dichroism and 1H-NMR) but eliminate sequence-specific DNA-binding activity (as detected by gel-mobility shift). On binding to the sharp angles of a four-way DNA junction (4WJ), however, the substitutions each promote formation of a high-molecular-weight aggregate, presumably by DNA-dependent oligomerization. The substitutions have opposite effects on initial binding to the 4WJ: whereas such binding is attenuated ten-fold by F12A, it is enhanced by I13A. A foreshortened "alanine cantilever", not observed among specific HMG boxes, occurs in a non-specific domain (HMG-1A) and may enhance architecture-selective DNA recognition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app