JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Expression of syntaxins in rat kidney.

Previously, we demonstrated that a putative vesicle-targeting protein, syntaxin-4, is expressed in renal collecting duct principal cells and is localized to the apical plasma membrane, suggesting a role in targeting aquaporin-2-containing vesicles to the apical plasma membrane. To investigate whether other syntaxin isoforms are present in the renal collecting duct, we determined the intrarenal localization of syntaxin-2 and -3. Reverse transcription-polymerase chain reaction (RT-PCR) experiments using total RNA extracted from kidney and various organs revealed that both syntaxin-2 and -3 are expressed in kidney cortex and medulla. RT-PCR experiments using microdissected tubules and vascular structures from the kidney revealed that syntaxin-3 mRNA, but not syntaxin-2, is expressed in collecting duct cells. Syntaxin-3 mRNA was also relatively abundant in the thick ascending limb of Henle's loop and in vasa recta. Syntaxin-2 mRNA was found chiefly in glomeruli. To investigate the localization of syntaxin-3 protein, a peptide-derived polyclonal antibody was raised in rabbits. In immunoblotting experiments, this antibody labeled a 37-kDa protein in inner medulla that was most abundant in plasma membrane-enriched subcellular fractions. Immunoperoxidase labeling of thin cryosections combined with immunogold electron microscopy showed that, in contrast to the labeling seen for syntaxin-4, syntaxin-3 labeling in medullary collecting duct was predominantly in the basolateral plasma membrane of intercalated cells. These results suggest the possibility that syntaxin-3 may be involved in selective targeting of acid-base transporters and/or in basolateral membrane remodeling in response to systemic acid-base perturbations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app