JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Three-dimensional pushrim forces during two speeds of wheelchair propulsion.

Upper limb pain frequently occurs in manual wheelchair users. Analyzing the pushrim forces and hub moments occurring during wheelchair propulsion is a first step in gaining insight into the cause of this pain. The objectives of this study were as follows: to describe the forces and moments occurring during wheelchair propulsion; to obtain variables that characterize pushrim forces and are statistically stable; and to determine how these variables change with speed. Convenience samples (n = 6) of paralympic athletes who use manual wheelchairs for mobility and have unimpaired arm function were tested. Each subject propelled a standard wheelchair on a dynamometer at 1.3 and 2.2 m/s. Biomechanical data were obtained using a force- and moment-sensing pushrim and a motion analysis system. A number of variables that describe the force and moment curves were evaluated for stability using Cronbach's alpha. Those measures found to be stable (alpha > 0.8) at each speed were then examined for differences associated with speed. The tangential, radial, and medial-lateral forces were found to comprise approximately 55, 35, and 10% of the resultant force, respectively. In addition to duration of stroke and propulsion, the following variables were found to be stable and to differ with speed (1.3 m/s +/- SD; 2.2 m/s +/- SD): peak force tangential to the pushrim (45.9 +/- 17.9 N; 62.1 +/- 30 N), peak moment radial to the hub (9.8 +/- 4.5 N x m 13.3 +/- 6 N x m), maximum rate of rise of the tangential force (911.7 +/- 631.7 N/sec; 1262.3 +/- 570.7 N/sec), and maximum rate of rise of the moment about the hub (161.9 +/- 78.3 N x m/s; 255.2 +/- 115.4 N x m/s). This study found stable parameters that characterize pushrim forces during wheelchair propulsion and varied with speed. Almost 50% of the forces exerted at the pushrim are not directed toward forward motion and, therefore, either apply friction to the pushrim or are wasted. Ultimately, this type of investigation may provide insight into the cause and prevention of upper limb injuries in manual wheelchair users.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app