JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sleep and quantitative EEG in patients with progressive supranuclear palsy.

Neurology 1997 October
Sleep architecture and quantitative EEG from wakefulness and REM sleep were studied in six patients (mean age, 70.5 years) with progressive supranuclear palsy (PSP) and compared with that of six control subjects (mean age, 69.8 years). Particular attention was given to quantifying REM sleep variables because of the known PSP-associated degeneration of the pedunculopontine tegmentum (PPT)--a critical structure in REM sleep generation. Patients with PSP had a shorter total sleep time, a lower sleep efficiency, a drastic reduction in sleep spindles, an atonic slow-wave sleep, and a lower percentage of REM sleep. The lower percentage of REM sleep was the result of both a reduction in the number of REM periods and a reduction in mean period of duration. REM density was also reduced while REM efficiency, atonia, and phasic EMG were similar to control values. REM sleep findings are consistent with the known role of the PPT in REM sleep induction. A slowing of the awake EEG was found for the six frontal leads and for C4, P4, and T4 in PSP patients. The frontal EEG slowing found in wakefulness is in accord with imaging and neuropsychological studies showing impairment of the frontal lobes in these patients. REM sleep EEG was not significantly slower in any regions. Because all previous studies on PSP have relied on visual inspection of the EEG tracings, the present finding of EEG slowing in the frontal lobes (rather than in the temporal regions or diffusely) suggests that our quantitative EEG approach may be more useful in determining specific regions of impaired cortical activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app