Add like
Add dislike
Add to saved papers

Variations on a segmental theme: muscle receptor organs and extensor neuromusculature in the squat lobster Munida quadrispina (Anomura, Galatheidae)

Extensor neuromusculature and the muscle receptor organs (MROs) associated with them have been conserved during the evolution of malacostracan crustaceans, despite species-specific differences between homologous segments in divergent taxa. Investigations of these differences could provide insight into how sensory and neuromuscular elements are modified to accommodate changing behavioural patterns. The most obvious differences between squat lobsters (galatheid anomurans) and macruran decapods, such as crayfish, are the greater dorso-ventral flattening of the galatheid abdomen and its flexed resting posture. To investigate whether the evolution of this altered posture affected extensor neuromusculature and MRO morphology and physiology, we used Methylene Blue staining, cobalt backfilling and extracellular recording techniques to describe these elements in the caudal thoracic and six abdominal segments of the squat lobster Munida quadrispina and compared our results with published descriptions of homologous elements in macrurans. In M. quadrispina, there is segmental variation both in the orientation of the MROs along the abdomen and in their physiological responses to stretch: apparent sensitivity is higher in caudal than rostral MROs. Homologues of three of the four accessory neurones found in crayfish occur, but AN#1 has a major dendrite not present in crayfish. Intersegmental differences in size and morphology of extensor motoneurones occur in M. quadrispina, as have been reported in crayfish, but are dissimilar in the two: abdominal ganglion 5 extensor motoneurones are the largest in M. quadrispina and the smallest in crayfish; this difference correlates with the difference in relative size of axial muscles along the abdomen reported previously for these species. M. quadrispina also differs from macrurans in having a single tonic, and no phasic, MRO on each side of the last abdominal segment. Together, these observations suggest that galatheids have evolved modified or additional neurobehavioural control(s) for the abdomen and tailfan.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app