JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP.

Biochemistry 1997 September 31
Tissue transglutaminase (TGase II) catalyzes the posttranslational modification of proteins by transamidation of available glutamine residues and is also a guanosinetriphosphatase (GTPase) and adenosinetriphosphatase (ATPase). Based on its homology with factor XIIIA, an extracellular transglutaminase, the structure of TGase II is likely composed of an N-terminal beta-sandwich domain, an alpha/beta catalytic core, and two C-terminally located beta-barrels. Here we used a domain-deletion approach to identify the GTP and ATP hydrolytic domains of TGase II. Full-length TGase II and two domain-deletion mutants, one retaining the N-terminal beta-sandwich and core domains (betaSCore) and the other retaining only the core domain, were expressed as glutathione S-transferase (GST) fusion proteins and purified. GST-Full and GST-betaSCore exhibited calcium-dependent TGase activity, whereas GST-Core had no detectable TGase activity, indicating the beta-sandwich domain is required for TGase activity but the C-terminal beta-barrels are not. All three GST-TGase II fusion proteins were photoaffinity-labeled with [alpha-32P]-8-azidoGTP and were able to bind GTP-agarose. The GTPase activity of GST-betaSCore was equivalent to that of GST-Full, whereas the ATPase activity was approximately 40% higher than GST-Full. GST-Core had approximately 50% higher GTPase activity and approximately 75% higher ATPase activity than GST-Full. The GTPase and ATPase activities of each of the GST-TGase II fusion proteins were inhibited in a dose-dependent manner by both GTPgammaS and ATPgammaS. These results demonstrate that the GTP and ATP hydrolysis sites are localized within the core domain of TGase II and that neither the N-terminal beta-sandwich domain nor the C-terminal beta-barrels are required for either GTP or ATP hydrolysis. Taken together with previous work [Singh, U. S., Erickson, J. W., & Cerione, R. A. (1995) Biochemistry 34, 15863-15871; Lai, T.-S., Slaughter, T. F., Koropchak, C. M., Haroon, Z. A., & Greenberg, C. S. (1996) J. Biol. Chem. 271, 31191-31195] the results of this study indicate that the GTP and ATP hydrolysis sites are localized to a 5. 5 kDa (47 amino acid) region at the start of the core domain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app