JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Molecular analysis of toxigenic Vibrio cholerae O139 Bengal strains isolated in Bangladesh between 1993 and 1996: evidence for emergence of a new clone of the Bengal vibrios.

Vibrio cholerae O139 Bengal emerged in 1992 and rapidly spread in an epidemic form, in which it replaced existing strains of V. cholerae O1 in Bangladesh during 1992 and 1993. The subsequent emergence of a new clone of V. cholerae O1 of the El Tor biotype that transiently displaced the O139 vibrios during 1994 to 1995 and the recent reemergence of V. cholerae O139 and its coexistence with the El Tor vibrios demonstrated temporal changes in the epidemiology of cholera in Bangladesh. We studied clonal diversity among V. cholerae O139 strains isolated from cholera patients and environmental surface water since their first appearance until their transient disappearance in 1994 as well as the O139 strains that reemerged during 1995 to 1996 and were isolated in the capital Dhaka and four rural districts of Bangladesh to investigate the origin of the reemerged strains. Analysis of restriction fragment length polymorphisms in genes for conserved rRNA and cholera toxin (CT) (ctxA) or in DNA sequences flanking these genes revealed four different ribotypes and four different ctx genotypes among the 93 strains of V. cholerae O139 studied. Ribotypes I and II and ctx genotypes A through C were shared by strains isolated from the epidemic outbreak during 1992 and 1993 in Bangladesh and India, ribotype III was represented by a single CT-negative O139 strain from Argentina, and 16 of 27 (59.2%) of the reemerged strains isolated during 1995 and 1996 belonged to a new ribotype of O139 vibrios designated ribotype IV. All 16 strains belonging to ribotype IV also belonged to a new ctx genotype (genotype 4). These results provide evidence for the emergence of a new clone of toxigenic V. cholerae O139 in Bangladesh. Further analysis of the rfb gene cluster by PCR revealed the absence of a large region of the O1-specific rfb operon and the presence of an O139-specific genomic region in all O139 strains. The PCR amplicon corresponding to the rfaD gene of a CT-negative O139 strain from Argentina was smaller in length than those of the toxigenic O139 strains but was identical to those of seven non-O1 and non-O139 strains. All O139 strains except the CT-negative strain carried structural and regulatory genes for CT and toxin-coregulated pili (ctxA, tcpA, tcpI, and toxR). These results suggest that the O139 Bengal strains possibly emerged from an El Tor strain but that the CT-negative non-Bengal O139 strain might have emerged from a non-O1, non-O139 strain. Thus, strains belonging to the O139 serogroup may have emerged from similar serotype-specific genetic changes in more than one progenitor strain of V. cholerae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app