JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Changes in corticomotor excitation and inhibition during prolonged submaximal muscle contractions.

Muscle & Nerve 1997 September
Changes in motor evoked potential (MEP) amplitude, post-MEP silent period duration, and interpolated twitch torque were measured using transcranial magnetic (TMS) and electrical (TES) stimulation during a 20% maximum voluntary contraction of the elbow flexors sustained to exhaustion. TMS- and TES-induced MEP amplitude increased progressively over the contraction period up until the point of exhaustion. The TMS-induced silent period was prolonged only during the second half of the contraction period, the time course being different from that of the MEP responses, whereas the TES-induced silent period did not change. The findings indicate that corticomotor excitability increases during a sustained submaximal voluntary contraction and that, as fatigue develops, there is a progressive buildup of intracortical inhibition. This may represent a mechanism whereby corticomotor output is maintained at an appropriate level to preserve optimal motor unit firing frequencies during a fatiguing contraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app