CLINICAL TRIAL
COMPARATIVE STUDY
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Exercise-induced skeletal muscle damage and adaptation following repeated bouts of eccentric muscle contractions.

Repeated bouts of eccentric muscle contractions were used to examine indirect indices of exercise-induced muscle damage and adaptation in human skeletal muscle. Twenty-four subjects (18 females, 6 males) aged 20.0 +/- 1.4 years (mean +/- S.D.) performed an initial bout of either 10 (n = 7), 30 (n = 9) or 50 (n = 8) maximum voluntary eccentric contractions of the knee extensors, followed by a second bout of 50 contractions 3 weeks later using the same leg. Muscle soreness was elevated after all bouts (P < 0.05, Wilcoxon test), although the initial bout reduced the soreness associated with the second bout. Force loss and a decline in the 20:100 Hz percutaneous electrical myostimulation force ratio were observed after all exercise bouts (P < 0.01). Serum creatine kinase activity was elevated following the initial bouts of 30 and 50 repetitions (P < 0.01), but there was no increase following 10 repetitions. No increase in serum creatine kinase activity was observed in any group following the second bout of contractions (P > 0.05). We conclude that skeletal muscle adaptation can be brought about by a single bout of relatively few eccentric muscle contractions. Increasing the number of eccentric muscle repetitions did not result in an increased prophylactic effect on skeletal muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app