Add like
Add dislike
Add to saved papers

Biological conversion of lignocellulosic biomass to ethanol.

The important key technologies required for the successful biological conversion of lignocellulosic biomass to ethanol have been extensively reviewed. The biological process of ethanol fuel production utilizing lignocellulose as substrate requires: (1) delignification to liberate cellulose and hemicellulose from their complex with lignin, (2) depolymerization of the carbohydrate polymers (cellulose and hemicellulose) to produce free sugars, and (3) fermentation of mixed hexose and pentose sugars to produce ethanol. The development of the feasible biological delignification process should be possible if lignin-degrading microorganisms, their echophysiological requirements, and optimal bioreactor design are effectively coordinated. Some thermophilic anaerobes and recently-developed recombinant bacteria have advantageous features for direct microbial conversion of cellulose to ethanol, i.e. the simultaneous depolymerization of cellulosic carbohydrate polymers with ethanol production. The new fermentation technology converting xylose to ethanol needs also to be developed to make the overall conversion process more cost-effective. The bioconversion process of lignocellulosics to ethanol could be successfully developed and optimized by aggressively applying the related novel science and technologies to solve the known key problems of conversion process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app