CLINICAL TRIAL
CONTROLLED CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metabolic alkalosis induced by pre-exercise ingestion of NaHCO3 does not modulate the slow component of VO2 kinetics in humans.

Seven healthy physically active nonsmoking men, aged 22.4 +/- (SD) 1.8 years performed two 6 min bouts of cycling at 40% VO2max (sub-lactate threshold/low power output exercise) and 87% VO2max (supra-lactate threshold/high power output exercise) at 70 rev.min-1, separated by 20 minutes rest, on two occasions: once as a control experiment (test C) and on a different day at approximately 1.5 h after ingestion of 250 mg (3 mmol).(kg body weight)-1 of NaHCO3 (test A). At the onset of low and high power output exercise performed after ingestion of NaHCO3, antecubital venous blood pH and HCO3- were significantly elevated (p < 0.05). Moreover, blood pH and HCO3-, tested at every minute of low and high power output exercise, was significantly higher (p < 0.05) in test A than in test C. No difference was found in plasma lactate concentration [La]pl during low power output exercise between A and C tests. In the terminal phase of the high power output exercise (87% VO2max) the level of [La]pl rose more rapidly in test A than in test C, reaching in the sixth minute of cycling 8.27 +/- 1.11 and 6.76 +/- 0.68 mmol.l-1 (p < 0.01) in test A and C, respectively. No significant differences were found in the rate of VO2 measured breath-by-breath between A and C tests, both during low and high power output exercise. The slow component of VO2 kinetics (expressed by difference between VO2 measured at the 6th minute of exercise minus the VO2 reached at the 3rd minute), occurring only during exercise corresponding to 87% VO2, was not significantly different in C and A tests (0.373 +/- 0.050 and 0.339 +/- 0.078 1 O2, respectively). The total VO2 consumed throughout the six minute cycling at power output of 40 and 87% VO2max performed in control conditions and after ingestion of NaHCO3 was not significantly different. We have demonstrated that significantly reduced exercise acidemia accompanied by a significantly elevated level of [La]pl accumulation, did not affect the slow component of the VO2 kinetics and the magnitude of oxygen uptake during exercise corresponding to 40 and 87% of VO2max.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app