COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Venlafaxine: in vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism; comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYP1A2.

AIMS: In order to anticipate drug-interactions of potential clinical significance the ability of the novel antidepressant, venlafaxine, to inhibit CYP2D6 dependent imipramine and desipramine 2-hydroxylation was investigated in human liver microsomes. The data obtained were compared with the selective serotonin re-uptake inhibitors, fluoxetine, sertraline, fluvoxamine and paroxetine. Venlafaxine's potential to inhibit several other major P450 s was also studied (CYP3A4, CYP2D6, CYP1A2).

METHODS: Ki values for venlafaxine, paroxetine, fluoxetine, fluvoxamine and sertraline as inhibitors of imipramine and desipramine 2-hydroxylation were determined from Dixon plots of control and inhibited rate data in human hepatic microsomal incubations. The inhibitory effect of imipramine and desipramine on liver microsomal CYP2D6 dependent venlafaxine O-demethylation was determined similarly. Venlafaxine's IC50 values for CYP3A4, CYP1A2 CYP2C9 were determined based on inhibition of probe substrate activities (testosterone 6 beta-hydroxylation, ethoxyresorufin O-dealkylase and tolbutamide 4-hydroxylation, respectively).

RESULTS: Fluoxetine, paroxetine, and fluvoxamine were potent inhibitors of imipramine 2-hydroxylase activity (Ki values of 1.6 +/- 0.8, 3.2 +/- 0.8 and 8.0 +/- 4.3 microM, respectively; mean +/- s.d., n = 3), while sertraline was less inhibitory (Ki of 24.7 +/- 8.9 microM). Fluoxetine also markedly inhibited desipramine 2-hydroxylation with a Ki of 1.3 +/- 0.5 microM. Venlafaxine was less potent an inhibitor of imipramine 2-hydroxylation (Ki of 41.0 +/- 9.5 microM) than the SSRIs that were studied. Imipramine and desipramine gave marked inhibition of CYP2D6 dependent venlafaxine O-demethylase activity (Ki values of 3.9 +/- 1.7 and 1.7 +/- 0.9 microM, respectively). Venlafaxine did not inhibit ethoxyresorufin O-dealkylase (CYP1A2), tolbutamide 4-hydroxylase (CYP2C9) or testosterone 6 beta-hydroxylase (CYP3A4) activities at concentrations of up to 1 mM.

CONCLUSIONS: It is concluded that venlafaxine has a low potential to inhibit the metabolism of substrates for CYP2D6 such as imipramine and desipramine compared with several of the most widely used SSRIs, as well as the metabolism of substrates for several of the other major human hepatic P450s.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app