Add like
Add dislike
Add to saved papers

The role of spinal delta1-opioid receptors in inhibiting the formalin-induced nociceptive response in diabetic mice.

Injection of formalin into the hindpaw of mice produced a biphasic nociceptive response consisting of immediate (first-phase) and tonic (second-phase) components. In diabetic mice, the flinching response of the first phase was increased while that in the second phase was decreased in diabetic mice relative to the results in non-diabetic mice. To examine the role of supraspinal and/or spinal endogenous delta1-opioid receptors in inhibiting the formalin-induced nociceptive response in diabetic mice, we assessed the effect of 7-benzylidenenaltrexone, a selective delta1-opioid receptor antagonist, and naltriben, a selective delta2-opioid receptor antagonist, administered either i.c.v. or i.t., on the formalin-induced flinching response. The second-phase response appeared when diabetic mice were pretreated with 7-benzylidenenaltrexone (0.1 and 0.3 mg/kg, s.c.), but not with naltriben (0.3 and 1 mg/kg, s.c.). On the other hand, while 7-benzylidenenaltrexone (0.1, 0.3 and 1 microg/mouse) administered i.t. had no significant effect on the first phase, it significantly and dose-dependently increased the second phase of the formalin-induced flinching response in diabetic mice. 7-Benzylidenenaltrexone (1 and 3 microg/mouse) administered i.c.v. had no significant effect on either the first- or the second-phase response in both non-diabetic and diabetic mice. These results suggest that a spinal delta1-opioid receptor-mediated endogenous antinociceptive system may inhibit the formalin-induced second phase of the nociceptive response in diabetic mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app