JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat.

Lysates of chloroplasts isolated from wheat (Triticum aestivum L. cv. Aoba) leaves were incubated on ice (pH 5.7) for 0 to 60 min in light (15 mumol quanta m-2 s-1), and degradation of the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco: EC 4.1.1.39) was analyzed by applying immunoblotting with site-specific antibodies against the N-terminal, internal, and C-terminal amino acid sequences of the LSU of wheat Rubisco. The most dominant product of the breakdown of the LSU and that which was first to appear was an apparent molecular mass of 37-kDa fragment containing the N-terminal region of the LSU. A 16-kDa fragment containing the C-terminal region of the LSU was concomitantly seen. This fragmentation of the LSU was inhibited in the presence of EDTA or 1,10-phenanthroline. The addition of active oxygen scavengers, catalase (for H2O2) and n-propyl gallate (for hydroxyl radical) to the lysates also inhibited the fragmentation. When the purified Rubisco from wheat leaves was exposed to a hydroxyl radical-generating system comprising H2O2, FeSO4 and ascorbic acid, the LSU was degraded in the same manner as observed in the chloroplast lysates. The results suggest that the large subunit of Rubisco was directly degraded to the 37-kDa fragment containing the N-terminal region and the 16-kDa fragment containing the C-terminal region of the LSU by active oxygen, probably the hydroxyl radical, generated in the lysates of chloroplasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app