Add like
Add dislike
Add to saved papers

Association of diabetic neuropathy with Na/K ATPase gene polymorphism.

Diabetologia 1997 May
Diabetes mellitus induces a decrease in Na/K ATPase activity in man and animals, and this decrease plays a role in the development of diabetic neuropathy. Na/K ATPase is encoded by various genes, of which the ATP1 A1 gene is expressed predominantly in peripheral nerves and in erythrocytes. To investigate whether a polymorphism in the Na/K ATPase genes could explain the predisposition of some patients with insulin-dependent diabetes mellitus (IDDM) to develop polyneuropathy, a restriction fragment length polymorphism (RFLP) of the ATP1 A1 gene was studied together with erythrocyte Na/K ATPase activity in 81 Caucasian patients with more than 10 years' duration of IDDM. Associations with diabetic neuropathy, retinopathy and nephropathy were sought. Digestion of the first intron of the ATP1 A1 gene by the Bgl II restriction enzyme revealed a dimorphic allelism. Frequency of the restricted allele was 0.18 in this selected series (however, it was 0.10 in representative samples of IDDM patients and of normal subjects in our area). Mean erythrocyte Na/K ATPase activity was lower in diabetic patients than in 42 control subjects (292 +/- 10, vs 402 +/- 13 nmol Pi.mg protein-1.h-1, p < 0.0001) and was not related to HbA1c value or to diabetes duration. It was lower in the group of the 28 patients bearing the restricted allele (241 +/- 10 vs 319 +/- 11 nmol Pi.mg protein-1.h-1, p < 0.0001). Neuropathy was absent in 50 patients, mild in 15 and severe in 16. When classified accordingly the three groups of patients did not differ with respect to sex, age and duration of diabetes. The respective frequency of the restricted allele among the groups was 10, 73 and 81%, (p < 0.0001) and mean erythrocyte Na/K ATPase activity was respectively: 322 +/- 10.7 nmol Pi.mg protein-1.h-1, 268 +/- 15 and 229 +/- 17, (p < 0.001). A borderline association between renal status or retinal status and repartition of polymorphism and a borderline correlation between renal status and Na/K ATPase activity were found, but significance disappeared after checking for the presence or absence of neuropathy. IDDM patients bearing the ATP1 A1 variant detected by Bgl II RFLP are much more frequently affected by neuropathy (relative risk 6.5, with 95% CI 3.3-13). Identification of this risk factor may help to prevent this complication. It is suggested that the restricted allele is in linkage disequilibrium with a genomic mutation allowing diabetes to induce a greater impairment of Na/K ATPase activity which could in turn favour the development of neuropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app