Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The wear of ultra-high molecular weight polyethylene sliding on metallic and ceramic counterfaces representative of current femoral surfaces in joint replacement.

A number of studies have investigated the influence of surface roughness on the wear of ultra-high molecular weight polyethylene (UHMWPE) in total joint replacement. The results of these studies have shown that the wear factor is proportional to the counterface roughness raised to a power greater than one. In this laboratory study, the effect of surface finish of several biomaterials on the wear of UHMWPE was studied. The study was conducted using reciprocating pin-on-plate wear tests with bovine serum as a lubricant. The biomaterials investigated as the counterface material included stainless steel, cast cobalt chrome (CoCr), CoCr (ASTM F799), alumina ceramic and zirconia ceramic. The counterface topographies of the wear plates were produced using techniques representative of current manufacturing methods. The surface roughness of the wear plates was varied in the range Ra = 0.005-0.04 micron; this was representative of femoral heads and femoral knee components currently used clinically. Metals and ceramics with a similar surface roughness produced a similar wear rate of UHMWPE. For the limited range of smooth counterfaces used in this study only a moderate correlation was found between the surface roughness and the wear factors. For a change in counterface roughness Ra of 0.005 to 0.04 micron, the wear factor increased from 7.4 +/- 1.6 to 16.5 +/- 2.4 x 10(-9) mm3/N m (mean +/- standard error). This variation in counterface roughness had much less effect in wear than previously reported for rougher counterfaces. For an extended range of counterface roughness, a stronger correlation was found using an exponential function for the regression fit. The exponential function shows the benefits of decreased wear with decreased surface roughness. Although the wear rate decreased less rapidly with decreased counterface roughness for Ra values below 0.05 micron, there were significant advantages to be gained from improved femoral head roughness to below 0.01 micron Ra.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app