Add like
Add dislike
Add to saved papers

Adoptive immunotherapy as an in vivo model to explore antitumor mechanisms induced by a recombinant anticancer vaccine.

We have described previously the construction, generation, and in vivo biologic consequences of a recombinant vaccinia virus containing the human CEA gene (rV-CEA) in an experimental murine colon carcinoma model. Immunization of C57BL/6 mice with rV-CEA led to antigen-specific inhibition of tumor growth in both prophylactic and therapeutic settings. Although such antitumor effects were correlated with the induction of CEA-specific T-cell responses, their exact contribution in the tumor rejection mechanism remained unclear. In this study, we examined the mechanism of action of rV-CEA, with emphasis on definition of the immune cells important for such antitumor effects. To that end, a cellular adoptive transfer model was established in vivo, which allowed specific functional analysis of donor-derived immune cells in naive, sublethally irradiated, tumor-bearing recipients. Splenocytes from rV-CEA-immunized donors expressed strong antitumor activity in such tumor-bearing recipients, whereas nonimmune donor cells did not. Depletion of immune T cells before cellular transfer abolished the antitumor response. Moreover, depletion of CD8+ T cells before transfer resulted in the loss of antitumor activity, despite the presence of CD4+ T cells. In contrast, antitumor activity was demonstrable with CD8-containing, CD4-depleted effectors, although it was not as effective as with both T-cell subpopulations combined. Finally, in beta 2-microglobulin/CD8+ T-cell-deficient mice, rV-CEA immunization exerted only partial antitumor protection, compared with the immune-competent controls. Overall, we demonstrated that (a) antitumor activity induced by rV-CEA was essentially mediated by CD8+ effectors; and (b) the combination of both CD8+ and CD4+ lymphocytes led to maximal antitumor therapeutic effects, suggesting an important helper or immunoregulatory contribution of the CD4+ subset. Thus, adoptive cellular transfer strategies may have implications for both the study of recombinant anticancer vaccines and the development of potential clinical applications for cancer immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app