RESEARCH SUPPORT, NON-U.S. GOV'T
The 2.8 A crystal structure of Gla-domainless activated protein C.
EMBO Journal 1996 December 17
The structure of the Gla-domainless form of the human anticoagulant enzyme activated protein C has been solved at 2.8 A resolution. The light chain is composed of two domains: an epidermal growth factor (EGF)-like domain modified by a large insert containing an additional disulfide, followed by a typical EGF-like domain. The arrangement of the long axis of these domains describes an angle of approximately 80 degrees. Disulfide linked to the light chain is the catalytic domain, which is generally trypsin-like but contains a large insertion loop at the edge of the active site, a third helical segment, a prominent cationic patch analogous to the anion binding exosite I of thrombin and a trypsin-like Ca[II] binding site. The arrangement of loops around the active site partially restricts access to the cleft. The S2 and S4 subsites are much more polar than in factor Xa and thrombin, and the S2 site is unrestricted. While quite open and exposed, the active site contains a prominent groove, the surface of which is very polar with evidence for binding sites on the primed side, in addition to those typical of the trypsin class found on the non-primed side.
Full text links
Trending Papers
Fluid Resuscitation in Patients with Cirrhosis and Sepsis: A Multidisciplinary Perspective.Journal of Hepatology 2023 March 2
Glucagon-Like Peptide 1 Receptor Agonists Versus Sodium-Glucose Cotransporter 2 Inhibitors for Atherosclerotic Cardiovascular Disease in Patients With Type 2 Diabetes.Cardiology Research 2023 Februrary
Management of Heart Failure With Preserved Ejection Fraction in Elderly Patients: Effectiveness and Safety.Curēus 2023 Februrary
Evaluation and Management of Pulmonary Hypertension in Noncardiac Surgery: A Scientific Statement From the American Heart Association.Circulation 2023 March 17
What's New in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD).Journal of Clinical Medicine 2023 Februrary 27
Physical interventions to interrupt or reduce the spread of respiratory viruses.Cochrane Database of Systematic Reviews 2023 January 31
Long COVID: major findings, mechanisms and recommendations.Nature Reviews. Microbiology 2023 January 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app