JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons.

Axonal regeneration has been demonstrated by supraspinal neurons long after a spinal cord injury, although this potential seems limited to a few neurons in specific nuclear groups. Whether the regenerative response could be enhanced by exposure to neurotrophic factors was examined in this study. Neurons injured during a cervical spinal cord hemisection lesion were labeled with true blue (TB). Four weeks after spinal cord injury, gel foam saturated with brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), ciliary neurotrophic factor (CNTF), or saline as a control was placed into the lesion cavity. The gel foam was replaced with fresh factor after 3 days, and 4 days later a peripheral nerve (PN) graft was apposed to the rostral cavity wall. Four weeks later neurons that grew an axon into the PN graft were labeled with nuclear yellow (NY). Cells that were double labeled (TB and NY) represented chronically injured neurons capable of axon regeneration. Cells labeled with NY only were either acutely injured neurons capable of axonal regrowth or uninjured neurons that had sprouted into the PN graft. The total number of TB/NY-labeled neurons was significantly increased following exposure to BDNF, NT-3, or CNTF. Specific regions most influenced by NT-3 and BDNF were the reticular formation and red nucleus. Treatment with CNTF resulted in a significant increase in most brain regions with a major contribution to descending pathways in the spinal cord, the motor cortex being the exception, with no evidence of axonal regeneration by neurons forming the corticospinal tract. The total number of NY-only labeled neurons also was significantly greater after treatment with BDNF or CNTF. These results demonstrate the potential to increase the regenerative response of specific chronically injured supraspinal neurons by application of neurotrophic factors to the injury site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app