We have located links that may give you full text access.
Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Review
Periodic vestibulocerebellar ataxia, an autosomal dominant ataxia with defective smooth pursuit, is genetically distinct from other autosomal dominant ataxias.
Archives of Neurology 1996 April
BACKGROUND: Periodic vestibulocerebellar ataxia is an autosomal dominant disorder characterized by defective smooth pursuit, gaze-evoked nystagmus, ataxia, and vertigo. The age of onset ranges from the third to the sixth decade. To date, all patients have originated from North Carolina, suggesting a single common founder.
OBJECTIVE: To clarify the classification of periodic vestibulocerebellar ataxia by determining whether it is allelic to other autosomal dominant cerebellar ataxias for which genes have been either localized or identified.
METHODS: Blood was collected and DNA isolated from 66 subjects (19 affected individuals) in two multigenerational families. The microsatellite markers used in the analysis either flanked or were tightly linked to the disease gene regions. Two-point and multipoint linkage analyses were performed to define the limits of exclusion.
RESULTS: Periodic vestibulocerebellar ataxia was excluded from loci linked to spinocerebellar ataxia type 1 (chromosome 6p), type 2 (chromosome 12q) type 3/Machado/Joseph disease (chromosome 14q), type 4 (chromosome 16q), and type 5 (11cent) as well as to episodic ataxia with myokymia (chromosome 12p), episodic ataxia with nystagmus (chromosome 19p), acetazolamide-responsive hereditary paroxysmal cerebellar ataxia (chromosome 19p), and dentatorubral-pallidoluysian atrophy/Haw River syndrome (chromosome 12p).
CONCLUSION: Periodic vestibulocerebellar ataxia is genetically distinct from those autosomal dominant ataxias for which chromosomal localization has been established.
OBJECTIVE: To clarify the classification of periodic vestibulocerebellar ataxia by determining whether it is allelic to other autosomal dominant cerebellar ataxias for which genes have been either localized or identified.
METHODS: Blood was collected and DNA isolated from 66 subjects (19 affected individuals) in two multigenerational families. The microsatellite markers used in the analysis either flanked or were tightly linked to the disease gene regions. Two-point and multipoint linkage analyses were performed to define the limits of exclusion.
RESULTS: Periodic vestibulocerebellar ataxia was excluded from loci linked to spinocerebellar ataxia type 1 (chromosome 6p), type 2 (chromosome 12q) type 3/Machado/Joseph disease (chromosome 14q), type 4 (chromosome 16q), and type 5 (11cent) as well as to episodic ataxia with myokymia (chromosome 12p), episodic ataxia with nystagmus (chromosome 19p), acetazolamide-responsive hereditary paroxysmal cerebellar ataxia (chromosome 19p), and dentatorubral-pallidoluysian atrophy/Haw River syndrome (chromosome 12p).
CONCLUSION: Periodic vestibulocerebellar ataxia is genetically distinct from those autosomal dominant ataxias for which chromosomal localization has been established.
Full text links
Related Resources
Trending Papers
Drug-Induced Myocardial Infarction: A Review of Pharmacological Triggers and Pathophysiological Mechanisms.Journal of Cardiovascular Development and Disease 2024 December 18
Guidelines for administering gadolinium-based contrast agents to patients with renal dysfunction (Version 3: Revised May 20th, 2024).Clinical and Experimental Nephrology 2025 January 3
The PRECISE trial: How should patients with chest pain be tested?Cleveland Clinic Journal of Medicine 2024 November 1
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app