JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Origin of the pulmonary venous orifice in the mouse and its relation to the morphogenesis of the sinus venosus, extracardiac mesenchyme (spina vestibuli), and atrium.

Anatomical Record 1996 September
BACKGROUND: Human embryology textbooks indicate that the trunks of the pulmonary vein and artery originate from the left atrium and aortic sac, respectively, based on histological analyses of limited human specimens. However, our studies show that the pulmonary venous trunk in the mouse as in other nonhuman vertebrates originates from a vascular "sac" at the venous pole, the sinus venosus.

METHODS: Mouse embryos of 9-11 days gestation were obtained and staged according to Theiler's criteria and fixed in Carnoy's solution. Samples were embedded in paraffin and serial sections were prepared.

RESULTS: Histological analysis showed that at day 9.5 the pulmonary venous rudiment was initially observed along the left margin in the extracardiac mesenchyme that separated the venous pole of the heart from the lung buds. The endothelium of the pulmonary vein was continuous, with a vascular sac we identified as sinus venosus based on its location immediately posterior to the left sinoatrial fold. The sinus venosus became incorporated into the left atrium (days 10-10.5) to form part of the posterior atrial wall. Similarly, the pulmonary vein and associated extracardiac mesenchyme were "drawn" into the atrium. This extracardiac mesenchyme of the venous pole, also called "spina vestibuli" and containing the pulmonary vein at its left margin, formed a wedge-shaped invagination within the atrium that contributed nonmuscular tissue to the primary atrial septum.

CONCLUSIONS: We propose that the orifice of the pulmonary vein establishes a link with the left side of the atrium as a consequence of a venous sac, the sinus venosus, and its associated mesenchyme (in which the root of the pulmonary vein is embedded) being incorporated into the atrium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app