JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inducible expression of cyclin D1 in T-47D human breast cancer cells is sufficient for Cdk2 activation and pRB hyperphosphorylation.

The sequential transcriptional activation of cyclins, the regulatory subunits of cell cycle specific kinases, regulates progress through the cell cycle. In mitogen-stimulated cells cyclin D1 induction in early G1 is followed by induction of cyclin E, activation of the cyclin-dependent kinase Cdk2, and hyperphosphorylation of the retinoblastoma gene product (pRB) in mid-to-late G1 phase. T-47D breast cancer cells expressing cyclin D1 under the control of a metal-responsive metallothionein promoter were used to determine whether Cdk2 activation and pRB hyperphosphorylation are consequences of cyclin D1 induction. A 4-5-fold increase in cyclin D1 protein abundance was followed by approximately 2-fold increases in cyclin E protein abundance and Cdk2 activity and by hyperphosphorylation of pRB. These responses were apparent approximately 3 h after the increase in cyclin D1 protein, and approximately 3 h prior to the entry of cyclin D1-stimulated cells into S phase 12 h after zinc treatment. Cyclin D1 immunoprecipitates contained Cdk4 but no detectable Cdk2 and displayed pRb but not histone H1 kinase activity. Cdk2 activation was therefore likely to be due to increased abundance of cyclin E/Cdk2 complexes rather than formation of active cyclin D1/Cdk2 complexes. The sequence of events following zinc induction of cyclin D1 thus mimicked that following mitogen induction of cyclin D1. These data show that cyclin D1 induction is sufficient for Cdk2 activation and pRB hyperphosphorylation in T-47D human breast cancer cells, providing evidence that cyclin D1 induction is a critical event in G1 phase progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app