JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The future of computer-assisted investigation of the polysomnogram: sleep microstructure.

Previous attempts at automated analysis of sleep were mainly directed towards imitating the Rechtschaffen and Kales rules (RKR) in order to save scoring time and further objectify the procedure. RKR, however, do not take into consideration the sleep microstructure of REM, stage 2, and SWS. While the microstructure of stage 2 has been analyzed in the past decade, the microstructure of REM and SWS are virtually unknown. In stage 2 the amount and distribution of spindles, K complexes, and arousal reactions have been studied. At least two types of spindles (12/s and 14/s) with different dynamics and locations have been identified. Two different shapes for K complexes have been described: one related to external sensory stimuli with similarities to evoked potentials and another one more related to sinusoidal slow wave activity seen in SWS. These two different K complex shapes have different distributions and, obviously, different functions. The authors also suggest that one should differentiate between arousal reactions and true arousals. Recent investigations suggest two types of delta waves in SWS. The more sinusoidal 1-3/s delta waves with a frontal maximum are already seen with lower amplitude in late stage 2 and increase their amplitude and incidence towards stage 3 and Stage 4. The other delta-wave type is slower (< 1/s), polymorphic, and has varying amounts of theta and higher frequency waves superimposed. During REM sleep it seems to be important to separate phases with rapid eye movements from those with none (REM sine REM), and count the amount and distribution of sawtooth activity. Background activity during REM and REM sine REM, as well as intra- and interhemispheric coherence should be analyzed separately. Only if the microstructure of the sleep EEG can be analyzed automatically using newer techniques such as transformation into wavelets and pattern classification with neuronal networks, and only if we learn more about the importance of microstructure elements, can automated sleep analysis go beyond the limited information obtained from scoring according to RKR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app