Clinical Trial
Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Unaltered oxygen uptake kinetics at exercise onset with lower-body positive pressure in humans.

The purpose of this study was to determine the influence of a reduced skeletal muscle blood flow on oxygen uptake (VO2) kinetics at the onset of cycle ergometer exercise. Seven healthy subjects performed rest-to-exercise transitions with a lower-body positive pressure (LBPP) of 45 Torr. Two work rates were selected for each subject: a moderate intensity (VO2, approximately 1.9 l min-1; delta[lactate], approximately 1 mequiv l-1) below the estimated lactate threshold and a heavy intensity (VO2, approximately 2.6 l min-1; delta[lactate], approximately 3 mequiv l-1) above this threshold. Pulmonary gas exchange variables and ventilatory (VE) responses were computed breath-by-breath from mass spectrometer and turbine volume meter signals, respectively, and mean response times (MRT) calculated. Samples of 'arterialized' venous blood were used for the determination of [lactate], pH and [K+]. While the application of 45 Torr LBPP had no effects on VO2 kinetics during moderate exercise (MRT: 33.5 +/- 1.2 s at 45 Torr vs. 32.8 +/- 1.3 s at 0 Torr; P > 0.05) or on [lactate], pH or [K+], breathing frequency (f) was increased (P < 0.05) and tidal volume (VT) reduced (P < 0.05). The addition of LBPP during heavy exercise did not alter VO2 kinetics (MRT: 35.2 +/- 1.5 s at 45 Torr vs. 34.8 +/- 1.5 s at 0 Torr; P > 0.05), or [lactate], pH or [K+]. Although both the VE (via an increased f) and CO2 output (VCO2) were significantly greater with LBPP by approximately 30 l min-1 and approximately 500 ml min-1, respectively, end-tidal CO2 partial pressure was decreasing, suggesting an additional ventilatory stimulus. These data can be interpreted to suggest that oxygen delivery is not critically dependent upon blood flow to the working muscle at exercise onset, while LBPP-induced increases in VE during suprathreshold exercise may be related to an accumulation of metabolites at the working muscle or the effects of pressure per se.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app