Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Role of central mu, delta-1, and kappa-1 opioid receptors in opioid-induced muscle rigidity in the rat.

Anesthesiology 1996 September
BACKGROUND: Opioids appear to produce their physiologic effects by binding to at least three types of opioid receptors, the mu (mu), delta (delta), and kappa (kappa) receptors. Muscle rigidity occurs after administration of supra-analgesic doses of potent mu-preferring agonists like alfentanil. The role of different supraspinal opioid receptors in this rigidity has been addressed only recently. To elucidate the contribution of central mu, delta, and kappa receptors to muscle rigidity, the effects of intracerebroventricularly administered opioid receptor-selective agonists and antagonists on alfentanil-induced muscle rigidity were examined in rats.

METHODS: Rats in which chronic intracerebroventricular cannulae had been implanted received an intracerebroventricular infusion of either saline or a mu (D-Ala2,N-Me-Phe4-Gly5-olenkephalin; DAMGO), delta(1) (D-Pen2,D-Pen5-enkephalin; DPDPE), or kappa(1) (trans-(+/-)-3,4-dichloro-N-methyl-N-(2-(1-pyrrolidinyl)- cyclohexyl)-benzene-acetamide methane sulfonate; U50,488H) opioid agonist. Ten minutes later, they received either saline or the mu-agonist alfentanil subcutaneously. Muscle rigidity was assessed using hindlimb electromyographic activity. Different groups of animals were pretreated with an intracerebroventricular infusion of either saline or a mu (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2; CTAP), delta (naltrindole), or kappa(1) (norbinaltorphimine) opioid antagonist before administration of either saline or a selective intracerebroventricular agonist.

RESULTS: The mu agonist DAMGO alone dose-dependently induced muscle rigidity. This effect was antagonized by pretreatment with the mu-selective antagonist CTAP. Neither DPDPE nor U50,488H, when administered alone, affected muscle tone. However, both the delta(1) and kappa(1) agonists dose-dependently attenuated alfentanil-induced rigidity. This antagonism of alfentanil rigidity was abolished after pretreatment with the delta (naltrindole) and kappa(1) (nor-binaltorphimine) antagonists, respectively.

CONCLUSIONS: The present data demonstrate that whereas systemic opiate-induced muscle rigidity is primarily due to the activation of central mu receptors, supraspinal delta(1) and kappa(1) receptors may attenuate this effect. This finding is consistent with previous demonstrations of functional interactions between different central opioid receptor populations in other opiate effects, and could have important pharmacotherapeutic implications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app