RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK.

Nature Genetics 1996 October
Mutations in the Na-K-2Cl cotransporter (NKCC2), a mediator of renal salt reabsorption, cause Bartter's syndrome, featuring salt wasting, hypokalaemic alkalosis, hypercalciuria and low blood pressure. NKCC2 mutations can be excluded in some Bartter's kindreds, prompting examination of regulators of cotransporter activity. One regulator is believed to be ROMK, an ATP-sensitive K+ channel that 'recycles' reabsorbed K+ back to the tubule lumen. Examination of the ROMK gene reveals mutations that co-segregate with the disease and disrupt ROMK function in four Bartter's kindreds. Our findings establish the genetic heterogeneity of Bartter's syndrome, and demonstrate the physiologic role of ROMK in vivo.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app