Add like
Add dislike
Add to saved papers

Resistance to interleukin 6 in human non-small cell lung carcinoma cell lines: role of receptor components.

The role of interleukin 6 (IL-6) in regulating the growth of three human non-small cell lung carcinoma (NSCLC) cell lines (NSCLC-3, NSCLC-5, and NSCLC-7, derived from a primary lesion, a brain lesion, and lymph node metastases, respectively) was examined. Although IL-6 alone did not alter the growth of these cells, the addition of soluble IL-6 receptor (sIL-6R) led to the inhibition of proliferation of one of the NSCLC cell lines, NSCLC-5. This antiproliferative effect was neutralized by antibodies to IL-6 and the IL-6R binding and signaling component (gp130). The IL-6-related cytokines, leukemia inhibitory factor and oncostatin M, inhibited proliferation of NSCLC-5 cells but were ineffective in NSCLC-3 and NSCLC-7 cells. NSCLC-7 cells (but not NSCLC-3 or NSCLC-5 cells) secreted biologically active IL-6 and expressed IL-6R. However, antibodies to IL-6 or gp130 failed to alter the proliferation of NSCLC-7 cells. All three cell lines expressed gp130 mRNA and protein. The level of expression of gp130 protein varied in the three cell lines (NSCLC-7 > NSCLC-3 > NSCLC-5). The examination of tyrosine phosphorylation of gp130 (as an early event in IL-6 signal transduction) revealed that gp130 could be phosphorylated in all cell lines after stimulation with IL-6 and/or IL-6 + sIL-6R. These results demonstrate that the mechanisms responsible for IL-6 resistance in different NSCLC cell lines vary and involve defects at either one or more levels of the IL-6 signaling cascade. In the NSCLC-5 cell line, IL-6 resistance (which can be reversed in the presence of sIL-6R) is due to the transcriptional inactivation of the IL-6R gene. In contrast, in the other two cell lines (NSCLC-3 and NSCLC-7), defect(s) in the signaling cascade downstream of gp130 phosphorylation, together with a lack of expression of IL-6R in NSCLC-3 cells, result in IL-6 resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app