JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Effect of calcium chloride and 4-aminopyridine therapy on desipramine toxicity in rats.

BACKGROUND: Hypotension is a major contributor to mortality in tricyclic antidepressant overdose. Recent data suggest that tricyclic antidepressants inhibit calcium influx in some tissues. This study addressed the potential role of calcium channel blockade in tricyclic antidepressant-induced hypotension.

METHODS: Two interventions were studied that have been shown previously to improve blood pressure with calcium channel blocker overdose. CaCl2 and 4-aminopyridine. Anesthetized rats received the tricyclic antidepressant desipramine IP to produce hypotension, QRS prolongation, and bradycardia. Fifteen min later, animals received CaCl2, NaHCO3, or saline. In a second experiment, rats received tricyclic antidepressant desipramine IP followed in 15 min by 4-aminopyridine or saline.

RESULTS: NaHCO3 briefly (5 min) reversed hypotension and QRS prolongation. CaCl2 and 4-aminopyridine failed to improve blood pressure. The incidence of ventricular arrhythmias (p = 0.004) and seizures (p = 0.03) in the CaCl2 group was higher than the other groups.

CONCLUSION: The administration of CaCl2 or 4-aminopyridine did not reverse tricyclic antidepressant-induced hypotension in rats. CaCl2 therapy may possibly worsen both cardiovascular and central nervous system toxicity. These findings do not support a role for calcium channel inhibition in the pathogenesis of tricyclic antidepressant-induced hypotension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app