REVIEW
Add like
Add dislike
Add to saved papers

Biomechanics of overhand throwing with implications for injuries.

Sports Medicine 1996 June
Proper throwing mechanics may enable an athlete to achieve maximum performance with minimum chance of injury. While quantifiable differences do exist in proper mechanics for various sports, certain similarities are found in all overhand throws. One essential property is the utilisation of a kinetic chain to generate and transfer energy from the larger body parts to the smaller, more injury-prone upper extremity. This kinetic chain in throwing includes the following sequence of motions: stride, pelvis rotation, upper torso rotation, elbow extension, shoulder internal rotation and wrist flexion. As each joint rotates forward, the subsequent joint completes its rotation back into a cocked position, allowing the connecting segments and musculature to be stretched and eccentrically loaded. Most notable is the external rotation of the shoulder, which reaches a maximum value of approximately 180 degrees. This biomechanical measurement is a combination of true glenohumeral rotation, trunk hyperextension and scapulothoracic motion. Near the time of maximum shoulder external rotation (ERmax), shoulder and elbow musculature eccentrically contract to produce shoulder internal rotation torque and elbow varus torque. Both the shoulder and the elbow are susceptible to injury at this position. At ball release, significant energy and momentum have been transferred to the ball and throwing arm. After ball release, a kinetic chain is used to decelerate the rapidly moving arm with the entire body. Shoulder and elbow muscles produce large compressive forces to resist joint distraction. Both joints are susceptible to injury during arm deceleration.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app