Add like
Add dislike
Add to saved papers

Direct in vivo gene transfer to canine myocardium using a replication-deficient adenovirus vector.

BACKGROUND: Direct myocardial gene transfer is a mordality that involves the introduction of genetic information into myocardial tissue to achieve a therapeutic effect. This study was designed to characterize the temporal and spatial limits of gene expression and to determine the safety of direct myocardial gene transfer in a large animal model using replication-deficient adenovirus vectors.

METHODS: Mongrel dogs underwent left thoracotomy and direct myocardial injections (100 microL/injection) of adenovirus vectors (10(9) pfu) carrying the DNA for the reporter enzyme chloramphenicol acetyl transferase or the angiogenic protein vascular endothelial growth factor. Two to 14 days after vector administration, regional protein expression was evaluated in myocardium and distant organs. Left ventricular function, assessed by echocardiography, and routine hematologic and biochemical indices were evaluated before and after vector administration.

RESULTS: Peak levels of chloramphenicol acetyl transferase activity were detected 2 days after vector administration, and levels above baseline persisted for at least 14 days. Local chloramphenicol acetyl transferase activity was detected at distances at least as far as 1.5 cm from the site of injection. Chloramphenicol acetyl transferase activity in distant organs was less than 0.1% of that in injected myocardium 7 days after vector administration. Localized expression of vascular endothelial growth factor was achieved for up to 7 days after a single vector administration. Cardiac function and laboratory values were unchanged during the study.

CONCLUSIONS: Adenovirus-mediated direct myocardial gene transfer can be accomplished safely in a large animal model, providing high levels of protein expression in a greater spatial distribution than previously reported, with minimal transfection of distant organs. Sustained and localized expression of a potent angiogenic mediator has been accomplished, which may provide an innovative strategy to stimulate angiogenesis in ischemic myocardium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app