JOURNAL ARTICLE

Alpha-adrenergic preservation of myocardial pH during ischemia is PKC isoform dependent

T F Rehring, R S Friese, J C Cleveland, X Meng, F G Robertson, A H Harken, A Bannerjee
Journal of Surgical Research 1996, 63 (1): 324-7
8661219
alpha-adrenergic stimulation of patients with ischemic heart disease should intuitively impose a destructive stress. However, therapeutic alpha1-adrenergic receptor mediated cardioadaptation prior to myocardial ischemia protects ventricular mechanical function, promotes electrophysiologic stability, and preserves myocyte viability. Prior to an anticipated cardiac ischemic insult, alpha1-adrenergic preconditioning attenuates ischemic myocardial acidosis by a protein kinase C-(PKC) dependent mechanism. The alpha1-adrenoceptor can directly stimulate calcium-independent nPKC isoforms via diacylglycerol (DAG) or indirectly stimulate calcium-dependent cPKC isoforms through the release of intracellular calcium via inositol triphosphate, (IP3). We hypothesized that alpha1-adrenergic limitation of ischemic acidosis is mediated by the family of calcium-dependent PKC isoforms. [31P]NMR spectra were obtained in isolated, buffer perfused rat hearts treated with alpha1-adrenergic stimulation [phenylephrine (PE) 50 microM, 2 min]; PKC blockade [chelerythrine chloride, (Chel) 20 microM]; or stearoyl-arachidonoyl glycerol (SAG, a DAG analogue, 100 microM, 2 min) administered 10 min prior to ischemia. Control hearts were perfused under normoxic conditions for 20 min. All hearts were then subjected to global ischemia (20 min, 37.5 degrees C). Developed pressure (DP) and heart rate were recorded continuously. pHi was obtained from chemical shift of inorganic phosphate. Immunohistochemical staining was utilized to delineate the translocation and activation profiles of specific PKC profiles established with each stimulus. Pre-ischemic alpha1-adrenergic stimulation did attenuate the myocellular hydrogen ion accumulation during sustained normothermic ischemia (6.90 +/- 0.13 vs control 6.54 +/- 0.10; P < 0.05). General PKC inhibition abrogated this effect (end-ischemic pH 6.17 +/- 0.10; P < 0.05 vs control and PE). Ischemic acidosis was not attenuated following selective nPKC stimulation (SAG, 6.48 +/- 0.08; NS vs control). Myocellular immunohistochemical staining revealed translocation of the calcium-independent PKC-epsilon isoform in the calcium-dependent PKC (SAG) group, but not in response to alpha1-adrenergic stimulation. The results suggest that (1) alpha1-adrenoceptor stimulation limits ischemic acidosis, (2) alpha1-adrenergic stimulated attenuation of ischemic acidosis is PKC dependent, (3) direct nPKC stimulation with SAG does not limit ischemic acidosis, and (4) SAG stimulates nPKC-epsilon isoform activation where alpha1-adrenergic stimulation does not. We conclude that alpha1-adrenergic stimulation limits ischemic acidosis by a cPKC-dependent mechanism and that the mobilization of the IP3 arm by receptor stimuli suppresses PKC-epsilon thus permitting the limitation of ischemic acidosis.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
8661219
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"