JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Human CD4 and human major histocompatibility complex class II (DQ6) transgenic mice: supersensitivity to superantigen-induced septic shock.

Rodents are significantly less sensitive to enterotoxin-induced shock, and are thus not valid human disease models. Here, we describe a mouse strain carrying the human CD4 and human major histocompatibility complex (MHC) class II (DQ6) transgenes in an endogenous CD4- and CD8-deficient background. T lymphocytes from these animals react to minute amounts (10-100 times less than control mice) of staphylococcal enterotoxin B (SEB) in vitro, similar to concentrations to which human cells react. In vivo, these double-transgenic, double-knockout mice succumb to normally sublethal amounts of SEB. This sensitivity is not due to a biased T cell receptor V beta repertoire, increased T cell reactivity, or increased sensitivity to macrophage-derived cytokines. Rather, tumor necrosis factor (TNF)-alpha production by T cells and serum levels of TNF-alpha correlate precisely with the clinical syndrome, showing a biphasic T cell-dependent response. These data show that both human CD4 and MHC class II molecules can render mice supersensitive to superantigen-induced septic shock syndrome. This animal model mimics the progression of septic shock in man by transforming normally resistant mice into hypersensitive SEB responders, a trait that is characteristic of humans. Mice that have been humanized by exchanging autochthonous superantigen ligands by their human equivalents may be useful to decipher superantigen responses in vivo and to assess the pathogenesis of superantigen-associated diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app