Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Poly(ADP-ribosyl)ation of histone H1 correlates with internucleosomal DNA fragmentation during apoptosis.

The biochemical role of poly(ADP-ribosyl)ation on internucleosomal DNA fragmentation associated with apoptosis was investigated in HL 60 human premyelocytic leukemia cells. It was found that UV light and chemotherapeutic drugs including adriamycin, mitomycin C, and cisplatin increased poly(ADP-ribosyl)ation of nuclear proteins, particularly histone H1. A poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide, prevented both internucleosomal DNA fragmentation and histone H1 poly(ADP-ribosyl)ation in cells treated with the apoptosis inducers. When nuclear chromatin was made accessible to the exogenous nuclease in a permeabilized cell system, chromatin of UV-treated cells was more susceptible to micrococcal nuclease than the chromatin of control cells. Suppression of histone H1 poly(ADP-ribosyl)ation by 3-aminobenzamide reduced the micrococcal nuclease digestibility of internucleosomal chromatin in UV-treated cells. These results suggest that the poly(ADP-ribosyl)ation of histone H1 correlates with the internucleosomal DNA fragmentation during apoptosis mediated by DNA damaging agents. This suggestion is supported by the finding that xeroderma pigmentosum cells which are defective in introducing incision at the site of DNA damage, failed to induce DNA fragmentation as well as histone H1 poly(ADP-ribosyl)ation after UV irradiation. We propose that poly(ADP-ribosyl)ation of histone H1 protein in the early stage of apoptosis facilitates internucleosomal DNA fragmentation by increasing the susceptibility of chromatin to cellular endonuclease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app