COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Nebulization of fluids of different physicochemical properties with air-jet and ultrasonic nebulizers.

PURPOSE: Empirical formulae relate the mean size of primary droplets from jet and ultrasonic nebulizers to a fluid's physicochemical properties. Although the size selective "filtering" effects of baffling and evaporation may modify the secondary aerosol produced, this research sought to evaluate whether viscosity and surface tension of nebulized fluids influenced the aerosol's size and output characteristics.

METHODS: Fluid systems of different surface tension and viscosity (glycerol and propylene glycol solutions [10-50% (v/v)] and a range of silicone fluids [200/0.65 cs-100cs]) were nebulized in three jet and two ultrasonic nebulizers. Secondary aerosol characteristics were measured with a Malvern 2600C laser diffraction sizer and the nebulization times, residual volumes and percentage outputs were determined.

RESULTS: While the droplet size appeared to be inversely proportional to viscosity for jet nebulizers, it was directly proportional to viscosity for ultrasonic nebulizers. Although fluid systems with lower surface tensions generally produced slightly smaller MMDs, the relationship between surface tension and droplet size was complex. The more viscous fluids required longer nebulization times and were associated with increased residual amounts (lower outputs). The ultrasonic nebulizers did not effectively, and were on occasion unable to, nebulize the more viscous fluids.

CONCLUSIONS: It follows that there are cut-off values for viscosity and/or surface tension above or below which ultrasonic devices fail to operate. Moreover, jet nebulizers generated an aerosol with an optimum respirable output from median-viscosity fluids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app