JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Elastin in systemic and pulmonary hypertension.

Increased elastin production and accumulation is a rapid and sensitive response to elevated vascular wall stress in both systemic and pulmonary hypertension. While initially protecting the vessel wall, these structural changes may in the longer term result in reinforcement of the hypertensive state and contribute to the persistence of the pathology of hypertension. Rapid responses apparently uncorrelated with increased elastin mRNA, at least in the case of systemic vessels, suggest novel mechanisms perhaps including increased efficiency of message translation or matrix accumulation of the protein. Investigations using in vitro organ and cell culture models have indicated a role for phospholipases and protein kinases, including protein kinase C, in stretch-induced elastin synthesis. In addition, tyrosine phosphorylation of membrane/sub-membrane/cytoskeletal sensors, including focal adhesion kinase and members of the lipocortin family, have been shown to be important in this transduction mechanism. Because its turnover is normally very slow, additional vascular elastin accumulated during hypertensive episodes, together with its consequences for the physical properties of the vessel wall, may persist long after blood pressure is restored to normal levels. Thus, recent interest has been drawn to the possibility of achieving regression of accumulated matrix elastin by promoting turnover of this protein through activation of endogenous vascular elastase and collagenase activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app