JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Calcium pyrophosphate dihydrate crystal deposition in synovium. Relationship to collagen fibers and chondrometaplasia.
Arthritis and Rheumatism 1993 May
OBJECTIVE: Reasons for apparent primary deposition of calcium pyrophosphate dihydrate (CPPD) crystals in some synovial membranes have not been systematically examined. We undertook the present study to investigate for and compare possible cellular and matrix factors related to the presence of these crystals in synovium and cartilage.
METHODS: Ten synovial membrane specimens and 6 cartilage specimens were obtained at the time of joint surgery from 10 patients with CPPD crystal deposition disease, for light microscopic (LM) and electron microscopic (EM) studies.
RESULTS: In all synovial and cartilage specimens, we found many of the small CPPD crystals aligned on or in parallel to collagen fibers, as seen by EM. In 9 of the 10 crystal-containing synovia, we found foci of chondrometaplasia adjacent to CPPD, by LM. In 7 of the synovia, including the one without LM evidence of chondrometaplasia, we observed the presence of chondrocyte-like cells by EM. We did not note any predictable relationship between the crystals and matrix vesicles, either in synovium or in cartilage.
CONCLUSION: Our EM findings provide evidence of the relationship of small CPPD-like crystals, presumably early forms, to collagen fibers both in synovium and in cartilage. By LM and EM, we also demonstrate evidence of a close association between chondrometaplasia and CPPD deposits in synovium. We suggest that chondrometaplasia might be responsible for synovial CPPD formation in predisposed patients. Both the collagen fibers and chondrocyte-like cells seem to be involved in the primary formation of CPPD deposits in the synovium as well as in the cartilage.
METHODS: Ten synovial membrane specimens and 6 cartilage specimens were obtained at the time of joint surgery from 10 patients with CPPD crystal deposition disease, for light microscopic (LM) and electron microscopic (EM) studies.
RESULTS: In all synovial and cartilage specimens, we found many of the small CPPD crystals aligned on or in parallel to collagen fibers, as seen by EM. In 9 of the 10 crystal-containing synovia, we found foci of chondrometaplasia adjacent to CPPD, by LM. In 7 of the synovia, including the one without LM evidence of chondrometaplasia, we observed the presence of chondrocyte-like cells by EM. We did not note any predictable relationship between the crystals and matrix vesicles, either in synovium or in cartilage.
CONCLUSION: Our EM findings provide evidence of the relationship of small CPPD-like crystals, presumably early forms, to collagen fibers both in synovium and in cartilage. By LM and EM, we also demonstrate evidence of a close association between chondrometaplasia and CPPD deposits in synovium. We suggest that chondrometaplasia might be responsible for synovial CPPD formation in predisposed patients. Both the collagen fibers and chondrocyte-like cells seem to be involved in the primary formation of CPPD deposits in the synovium as well as in the cartilage.
Full text links
Trending Papers
Management of type 2 diabetes in the new era.Hormones : International Journal of Endocrinology and Metabolism 2023 September 14
Beta-blocker therapy in patients with acute myocardial infarction: not all patients need it.Acute and critical care. 2023 August
The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation.Journal of Intensive Care 2023 May 24
Abdominal wall closure.British Journal of Surgery 2023 September 16
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app