Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Fluorescence investigations of albumin from patients with familial dysalbuminemic hyperthyroxinemia.

Familial dysalbuminemic hyperthyroxinemia (FDH) is an autosomal dominant syndrome in which clinically euthyroid patients have elevated total thyroxine levels. These high serum thyroxine levels are traceable to altered binding of thyroxine to the patient's albumin. Albumin from FDH patients and normal volunteers have been purified. Reverse-phase and ion-exchange high performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis on the FDH-human serum albumin (HSA) samples show a single band that comigrates with normal HSA. In both protein solutions the intrinsic fluorescence, upon 280 nm excitation, is predominantly due to the single tryptophan residue. The quantum yield of this intrinsic fluorescence in the FDH-HSA solutions is, however, reduced relative to that of HSA. Furthermore, the "average" lifetime value of the tryptophan emission in the FDH-HSA sample is less than that of normal HSA, consistent with its reduced quantum yield. The binding of thyroxine to both albumins effectively quenches the tryptophan emission probably via a nonradiative energy transfer mechanism. Time-resolved data suggest that the albumin from the dysalbuminemic patients is actually an approximately equimolar mixture of normal HSA and FDH-HSA indicative of heterologous expression. Quenching of the intrinsic HSA and FDH-HSA fluorescence by serial additions of thyroxine showed enhanced quenching of FDH-HSA relative to HSA at any T4 to albumin mole ratio, therefore supporting earlier reports of increased thyroxine affinity to FDH-HSA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app