Clinical Trial
Journal Article
Randomized Controlled Trial
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Lead-contaminated soil abatement and urban children's blood lead levels.

JAMA 1993 April 8
OBJECTIVE: To test the hypothesis that a reduction of 1000 ppm or more of lead in soil accessible to children would result in a decrease of at least 0.14 mumol/L (3 micrograms/dL) in blood lead levels.

SETTING: Urban neighborhoods with a high incidence of childhood lead poisoning and high soil lead levels.

DESIGN: Randomized controlled trial of the effects of lead-contaminated soil abatement on blood lead levels of children followed up for approximately 1 year after the intervention.

PATIENTS: A total of 152 children less than 4 years of age with venous blood lead levels of 0.34 to 1.16 mumol/L (7 to 24 micrograms/dL). Children were largely poor and had a mean age at baseline of 32 months, a mean blood lead level of 0.60 mumol/L (12.5 micrograms/dL), and a median surface soil lead level of 2075 ppm.

INTERVENTIONS: Children were randomized to one of three groups: the study group, whose homes received soil and interior dust abatement and loose paint removal; comparison group A, whose homes received interior dust abatement and loose paint removal; and comparison group B, whose homes received only interior loose paint removal.

MAIN OUTCOME MEASURES: Change in children's blood lead levels from preabatement levels to levels approximately 6 and 11 months after abatement.

RESULTS: The mean decline in blood lead level between preabatement and 11 months after abatement was 0.12 mumol/L (2.44 micrograms/dL) in the study group (P = .001), 0.04 mumol/L (0.91 microgram/dL) in group A (P = .04), and 0.02 mumol/L (0.52 microgram/mL) in group B (P = .31). The mean blood lead level of the study group declined 0.07 mumol/L (1.53 micrograms/dL) more than that of group A (95% confidence interval [CI], -0.14 to -0.01 mumol/L [-2.87 to -0.19 micrograms/dL]) and 0.09 mumol/L (1.92 micrograms/dL) more than group B (95% CI, -0.16 to -0.03 mumol/L [-3.28 to -0.56 micrograms/dL]). When adjusted for preabatement lead level, the 11-month mean blood lead level was 0.06 mumol/L (1.28 micrograms/dL) lower in the study group as compared with group A (P = .02) and 0.07 mumol/L (1.49 micrograms/dL) lower than in group B (P = .01). The magnitude of the decline independently associated with soil abatement ranged from 0.04 to 0.08 mumol/L (0.8 to 1.6 micrograms/dL) when the impact of potential confounders, such as water, dust, and paint lead levels, children's mouthing behaviors, and other characteristics, was controlled for.

CONCLUSIONS: These results demonstrate that lead-contaminated soil contributes to the lead burden of urban children and that abatement of lead-contaminated soil around homes results in a modest decline in blood lead levels. The magnitude of reduction in blood lead level observed, however, suggests that lead-contaminated soil abatement is not likely to be a useful clinical intervention for the majority of urban children in the United States with low-level lead exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app