COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Sporocidal properties of peracetic acid and hydrogen peroxide, alone and in combination, in comparison with chlorine and formaldehyde for ultrafiltration membrane disinfection.

The sporocidal properties of peracetic acid, hydrogen peroxide, chlorine, and formaldehyde were compared in vitro using a dilution-neutralization micromethod. A combination of peracetic acid and hydrogen peroxide was also tested to assess their interactions. The activities of these agents, which are widely used as disinfectants, were evaluated against Bacillus spore isolates found on stored membranes and collection cultures. Peracetic acid and chlorine exhibited an excellent antimicrobial activity, with a destruction of 10(5) spores/mL after 5 min of contact. Generally the effects of the biocides tested were time dependent. The sporocidal activities of hydrogen peroxide and formaldehyde were the lowest. The combination of peracetic acid and hydrogen peroxide, tested by a checkerboard micromethod, was found to be synergistic. The minimal sporocidal concentration (MSC) was established in terms of time for each biocide. The lowest MSC values for peracetic acid, hydrogen peroxide, chlorine, and formaldehyde were 168-336 ppm (1-2 h of contact), 5625-11250 ppm (5-7 h), 168-336 ppm (2-3 h), and 1875-3750 ppm (5-30 min), respectively. The MSC of a biocide combination of peracetic acid and hydrogen peroxide showed that synergy was maintained with increasing contact time and that the MSC could be reduced by two to eight times when compared with those of the biocides alone. Optimal concentrations and contact times of those chemicals that were promising in vitro were then tested for their ability to disinfect ultrafiltration membranes. The sporocidal activities of peroxide compounds and chlorine were confirmed and the synergism between peracetic acid and hydrogen peroxide was also maintained.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app