Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice.

Nature 1993 Februrary 19
Duchenne progressive muscular dystrophy is a lethal and common X-linked genetic disease caused by the absence of dystrophin, a 427K protein encoded by a 14 kilobase transcript. Two approaches have been proposed to correct the dystrophin deficiency in muscle. The first, myoblast transfer therapy, uses cells from normal donors, whereas the second involves direct intramuscular injection of recombinant plasmids expressing dystrophin. Adenovirus is an efficient vector for in vivo expression of various foreign genes. It has recently been demonstrated that a recombinant adenovirus expressing the lac-Z reporter gene can infect stably many mouse tissues, particularly muscle and heart. We have tested the ability of a recombinant adenovirus, containing a 6.3 kilobase pair Becker-like dystrophin complementary DNA driven by the Rous sarcoma virus promoter to direct the expression of a 'minidystrophin' in infected 293 cells and C2 myoblasts, and in the mdx mouse, after intramuscular injection. We report here that in vivo, we have obtained a sarcolemmal immunostaining in up to 50% of fibres of the injected muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app