Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures

A Obenaus, M Esclapez, C R Houser
Journal of Neuroscience 1993, 13 (10): 4470-85
In situ hybridization methods were used to determine if glutamic acid decarboxylase (GAD) mRNA-containing neurons within the hilus of the dentate gyrus are vulnerable to seizure-induced damage in a model of chronic seizures. Sprague-Dawley rats were injected intraperitoneally with pilocarpine, and the hippocampal formation was studied histologically at 1, 2, 4, and 8 week intervals after pilocarpine-induced seizures. In situ hybridization histochemistry, using a digoxigenin-labeled GAD cRNA probe, demonstrated a substantial decrease in the number of GAD mRNA-containing neurons in the hilus of the dentate gyrus in the pilocarpine-treated rats as compared to controls at all time intervals. Additional neuronanatomical studies, including cresyl violet staining, neuronal degeneration methods, and histochemical localization of glial fibrillary acidic protein, suggested that the decrease in the number of GAD mRNA-containing neurons was related to neuronal loss rather than to a decrease in GAD mRNA levels. The loss of GAD mRNA-containing neurons in the hilus contrasted with the relative preservation of labeled putative basket cells along the inner margin of the granule cell layer. Quantitative analyses of labeled neurons in three regions of the dentate gyrus in the 1 and 2 week groups showed statistically significant decreases in the mean number of GAD mRNA-containing neurons in the hilus of both groups of experimental animals. No significant differences were found in the molecular layer or the granule cell layer, which included labeled neurons along the lower margin of the granule cell layer. The results indicate that, in this model, a subpopulation of GAD mRNA-containing neurons within the dentate gyrus is selectively vulnerable to seizure-induced damage. Such differential vulnerability appears to be another indication of the heterogeneity of GABA neurons.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"